Creating Earth’s Atmosphere

earth-render

There are many aspects to think about when creating earth: terrain color/bump map, cloud layer casting shadows, ocean specular/color map, night city-lights map, and of course an atmosphere. But the trickiest part of creating a good looking earth is keeping the clouds white without the atmosphere tinting them blue.

I learned this technique from the two video tutorials below. What I particularly enjoy about this technique is that the planet shadow casting on the atmosphere isn’t created by a light, instead it’s controlled by a color ramp in the atmosphere shader. So you can directly control where the atmosphere falls off and imitate light scatter. In other words, it doesn’t matter where you place your light because the atmosphere is a system of its own. This means faster render times since there no volume shadows to compute.

Continue reading

Creating a Star Field

One of my favorite things is to fly through a star field in the dome. It’s those particular moments when the dome seemingly disappears and your imagination takes over. It’s truly a majestic and thought provoking experience. But how can you make a star field thats easy to manipulate and renders efficiently?

In the spirit of creating a star field that is reusable but still realistic, we chose to mimic the star distribution of a main sequence star field. Of course it’s all editable if you need. But for all practical purposes this template works beautifully for a flight between star systems. You just need to choose the density of stars.

We decided to go with four different star colors that are the foundation for all the star sprites. They are designed to simulate the look of Sky-Skan’s DigitalSky stars since we use it as a basis for the star globe. You would think that only 4 different star color images being repeated thousands of times on the star sprites wouldn’t be enough variability. But the truth is that within the dome it’s all about the immersion of flying among the stars. Everyone is focused on the grand sense of scale.

Continue reading

Background Stars v1

cropped-starglobe-maya-render(For an improved version of this star globe, please see Background Stars v2.)

Do you need night sky stars with accurate magnitudes and a good looking milky way for the background of your whole Maya scene? Do you want 360 degrees of coverage without any stitch marks, seams, or pole pinching? Well here is what I call the ‘star globe’. (Named out of ease for communicating with my team.)

Just import it, point-constrain it to your camera, and scale the star globe to surround your entire scene. This insures that the star globe will follow the cameras position but not its rotation. For a final render, we typically use preview quality settings and don’t have any aliasing/blinking of the stars. Fisheye camera typically at 500 focal length to shortcut the grey blurry line problem, but it depends how big you’ve scaled the star globe  (you’ll know easily if the stars look blurry and weird).

Also, make sure to check the light linking of the star globe so that there are no lights attached. This is because the star globe material has the texture set to incandescence. This insures that it will look always look the same without having to worry about other light sources accidentally brightening the stars.

DOWNLOAD
maya scene (using mental ray) – star globe

StarglobeMayaViewportScreenshot

Continue reading

Custom Maya Camera for Fulldome Production

fulldome-cam-screenshot
Here is a custom Maya camera I’ve made for our fulldome productions. Just import and go! (Requires Domemaster3D)

DOWNLOAD
maya scene (using mental ray) – custom fulldome camera rig

Notes
— Uses an aim/up to point the camera. It is applied in a way that allows you to aim the camera and not worry about the camera Z rolling within 180° field of view.
— A hemicube camera rig is parented within fisheye camera (and hidden). Therefore it automatically uses the aim. So if you need to switch over and use hemicube cam for whatever reason, then it’s there and waiting for ya!
— Includes a dome visualization that isn’t selectable. It just lets you know where the camera is facing. It’s also helpful as a guide to see where the springline hits in a scene. I called it the “FYI”.
— Click the camera to see the custom attributes: FYI scale, FYI visibility, FYI Uni Helper, Cam Locator Scale, and Custom Roll. Includes the ability to scale the camera locator without affecting the cam scaleXYZ. (Since changing cam scaleXYZ changes how textures are placed onto surfaces.)
— Preset Domemaster3D settings. (This assumes you already have Domemaster3D installed). Check out this simple tutorial to apply the DomeAFL lens shader to a Maya camera.
— It’s by no means perfect and definitely has a gimbal-lock-camera-flip if you go past 180°, but it works well if you know its limits. Play around with it and you will quickly understand.