Expedition to NASA’s Kennedy Space Center

We recently traveled to NASA’s Kennedy Space Center to gather reference imagery for our planetarium show production about human spaceflight to Mars. What an epic trip!

It was surreal to walk inside of the Vehicle Assembly Building and travel up to the 37th floor of this incredibly huge single-story building. Currently the VAB is being retrofitted so that the SLS rocket can be vertically assembled within. This retrofit includes special motorized platforms which can be moved into place according to the needs of the project at hand.

The Mobile Launcher Platform is a sight to behold. We walked underneath the platform and looked through the massive exhaust duct where the SLS rockets boosters will blast off. The platform is currently being altered in order to support the heavier weight and additional thrust of the SLS.

Walking underneath the crawler transporter was a good moment to grasp it’s immense scale. It is such a strange mechanical behemoth and so it was difficult to imagine it in motion to slowly transport a standing rocket while also keeping it level. When the time comes, the crawler will carry both the Mobile Launcher Platform and the SLS from the Vehicle Assembly Building to the launch pad.

Exploring Launch Pad 39B was exciting from a historical perspective and also looking to the future. This launch site was used for the Apollo 10 launch (Saturn V), three Skylab missions (Saturn 1B), and 53 space shuttle launches. Currently the pad is being retrofitted so it can withstand the thrust levels expected from SLS and other large-power rockets.

And of course we had to visit the rocket garden and Saturn V displayed horizontally…

Many thanks to the amazing NASA staff for their generosity and eagerness. It was a wonderfully inspirational trip that has proved vital for the production of our planetarium show. Now we’re back to the grindstone and cranking out 3D animation for the show. Long live NASA!

NASA Grant – Jackson Hole Finalist – Boston Globe Article

NASA Grant: Planetarium Show

A while back we applied for a NASA grant and we’ve been patiently waiting to hear the results… And we are thrilled to announce that we have been selected! We are one of nine organizations chosen from 73 applications through a peer-reviewed process.

The two-year NASA grant will enable us to capture the excitement of the next generation’s moonshot — the human journey to Mars and back. We will create two educational experiences that will bring to life the engineering skills and team spirit fueling this historic pioneering endeavor. So stay tuned…

AS12-49-7278-webImage Source: NASA Project Apollo Archive

Jackson Hole Science Media Awards 2016

The Jackson Hole Science Media Awards has announced finalists in 22 categories spanning content, program, and craft in the science media field. This competition celebrates the world’s most effective science storytellers and stories. This year’s competition saw more than 500 entries competing for 25 special awards. More than 115 international judges screened an aggregated 2,100 hours in order to select the finalists.

I am pleased to announce that our show From Dream to Discovery: Inside NASA is a finalist within the Immersive Cinema category.

Boston Globe: Write-up on SubSpace Project

Over the last few months we have been focusing on SubSpace Project. This is an experimental playground for developing fresh and original social experiences for adults. Art, science, and technology collide to create a new wave of intelligent nightlife that is provocative and one-of-a-kind. From musical tributes in the Planetarium to performance art installations and beyond, SubSpace Project is an ever-evolving laboratory for Boston’s most intriguing and immersive experiences.

Our current series of experiences is dedicated to amazing musicians such as David Bowie, Prince, Björk, Beyoncé, Radiohead, Tom Waits, and Lady Gaga. And our 3D animators have been creating dome visuals with the aim of making an intense music show experience.

So it was a pleasant surprise when The Boston Globe was interested in writing an article about the work we’ve been doing. Check out the online article written by Sophie Haigney.


“I am in a tunnel of blue light that is also sort of a hurricane. I am approaching its mouth, or its eye. Fish spiral toward me. “I thrive best hermit style, with a beard and a pipe and a parrot on each side,” Björk croons, in the background. Then I am in a watery place where silver orbs are bouncing.”

“Actually, I am in the Charles Hayden Planetarium at the Museum of Science. This show is part of their SubSpace Project, which features dynamic visual interpretations of music. Harnessing the planetarium’s immersive dome-theater space and highly advanced audiovisual technology — usually used for shows like “Moons: Worlds of Mystery” — the staff is now paying tribute to musicians. In this case, it’s Björk, the avant-garde Icelandic singer who has inspired a cult following and even a mid-career survey at New York’s Museum of Modern Art.”

Interviews at IMERSA 2016 – Recent Challenges

It’s been fascinating to see IMERSA evolve and mature over the last few years. And since things are moving so fast, I wanted to document the challenges being faced in the immersive community with a series of interviews.

Last year at IMERSA there were nervous murmurings of VR, but this year there is clear excitement. It’s particularly interesting to see fulldome producers realize that they already possess the tools, skills, and ultra high resolution workflows to create polished VR experiences.

IMERSA 2016: View Presentation Recordings

Select presentations available on the IMERSA Vimeo page. Below are my favs:
How Are Museums & Educators Using VR-AR Today / The VR and AR Explosion
Immersion Expanding: New Opportunities for Immersive Experiences
Challenges and Strategies for Producers
The Future of Immersion
Ambisonics Sound Technology
What’s Never Been Seen: Successful Visualizing for Fulldome Storytelling
Shooting 360 Trials and Successes
Proven Methods for a Faster Render
Visual Immersion for Greater Learning Gains in Digital Domes
Let’s Play: Using Games to Entertain and Educate Audiences in the Planetarium
Real Developments in Virtual Reality

— Jenny Carden / Zenka.org
— Greg Downing / xRez Studio
— Troy Whitmer / Sky-Skan
— Jay Heinz / Morehead Planetarium
— David Merrell / Clark Planetarium
— Ken Ackerman / California Academy of Sciences
— Dan Neafus / Denver Museum of Nature and Science
— Orion McCaw / Roundhouse Productions
— Mark Petersen / Loch Ness Productions
— Jay Lamm / Louisiana Art & Science Museum
— Annette Sotheran-Barnett / Sky-Skan

The Dome Dialogues – Andrew Hazelden

An interview with the man that needs no introduction! Andrew Hazelden and I discuss the many vital production tools that he has been creating for fulldome and VR. We discuss in-depth tools such as: Domemaster3D, PlayblastVR, RocketComp, Domemaster Fusion Macros.

0m 6s – Intro
3m 53s – RocketComp
5m 58s – PlayblastVR
17m 8s – Andrew’s History
20m 14s – Domemaster3D
41m 8s – Domemaster Fusion Macros
1h 27m 41s – Maxwell Render Toolbox

Andrew Hazelden is a visual effects artist and co-founder of Dover Studios. He regularly develops tools, tutorials, and documentation for VR/fulldome production, photography, visual effects, and electronics. He has passion for sharing knowledge and also enjoys writing about hobby experiments he does on the weekends and the tools he uses everyday. A few examples of his wide range of interests include building an underwater ROV, flying a model airplane, compiling a mental ray shader, creating a time-lapse video, or doing stereoscopic 3D photography.

IMERSA Summit 2016: Presentations We’re Giving

imersa-logo-squareWe are going to be at the upcoming IMERSA Summit and sharing several presentations. With so much that’s been happening lately in the immersive community, it’s bound to be an exciting conference this year. David, Heather, and I will each be on different panels and giving presentations. Hope you can check out what we’ve been working on! More info below.

Panel: Challenges and Strategies for Producers
Thursday, March 17 at 10:45 AM
Update: Watch a video recording of this talk
A team of panelists will discuss questions of importance to producers: What are the biggest obstacles to creating content for immersive media, specifically fulldome? Our panel of producers, with lots of help from the audience, will consider the answers and propose solutions. We want to hear from you! In this lively audience led discussion, we will explore your greatest successes and failures in creating and experiencing immersive media.

— Moderator: David Rabkin (Museum of Science)
— Panelists: Robin Sip (Mirage3D), Annette Sotheran-Barnett (Sky-Skan), Mark Webb (Adler Planetarium), Chris Lawes (Fulldome.pro)

What’s Never Been Seen – Successful Visualizing for Fulldome Storytelling
Thursday, March 17 at 04:15 PM
Update: Watch a video recording of this talk
The script is written. The storytelling is effective. But there are calls for visuals of things that don’t exist yet, or real data representations that have never been visualized. Storytelling for immersive fulldome environments has required producers to take the idea of the “artist concept” to new levels. How do we ensure a successful pipeline between the left-brain expert supplying the input and the right-brain creative implementing the visuals to achieve the desired⎯but most important, accurately told story for the educational goals? Examples of what works… and sometimes what doesn’t.

— Presented by Tom Casey (Home Run Pictures), Jason Fletcher (Museum of Science), Carolyn Sumners (Houston Museum of Natural Science)

Let’s Play: Using Games to Entertain and Educate Audiences in the Planetarium
Saturday, March 19 at 10:15 AM
Update: Watch a video recording of this talk
Experiments with gaming recently done by the Charles Hayden Planetarium at the Museum of Science in Boston, will be presented as well as some plans for the future. We’ll talk about the partnerships we’ve made, the logistics of planning for these events, and some of the technology behind it all. We welcome discussion on what other planetariums have tried, what has worked, and, of course, what hasn’t.

— Presented by Heather Fairweather (Museum of Science)

IMERSA Summit 2016: View Entire Agenda

David Rabkin (Planetarium Director)
Jason Fletcher (Science Visualizer)
Heather Fairweather (Science Visualizer)

Upcoming Special Events in the Planetarium

Image Source: A Slower Speed of Light

Einstein’s Playground

— Thursday, February 11 /// 7:15pm
— Admission $10
— Gerd Kortemeyer, PhD, associate professor of physics at Michigan State University

Have you ever wanted to experience the complete distortion of time and space as we know it? The Charles Hayden Planetarium has partnered with the MIT Game Lab to immerse you in a virtual special relativity playground where you’ll witness the laws of physics in a completely new way. Using the power of video games, we’ll turn Einstein’s most famous theory from an abstract concept into something you can encounter yourself right here at the Museum of Science. Experience the effects of movement, time, and space as you’ve never been able to before!

Tickets on sale beginning January 28 /// (January 26 for Museum members)

Image Source: Keith Ellenbogen

A World Underwater: The Reefs of Belize

— Thursday, March 24 / 7:00pm
— Admission Free
— Keith Ellenbogen, award-winning underwater photographer and 2015-16 CAST Visiting Artist at MIT | Allan Adams, PhD, theoretical physicist, associate professor of physics and member of the Creative Art Council at MIT

Take an underwater journey to Glover’s Reef Research Station in Belize and immerse yourself in coral reefs! With images and cutting-edge immersive video captured during their January 2016 expedition, Keith and Allan will tell the story of the Mesoamerican reef ecosystem, the researchers working hard to conserve it, and the innovative MIT course behind the expedition in which students from across the institute (chemists, civil engineers, historians, physicists, and poets) learned the art, technique, and technology of underwater conservation photography. Under the Planetarium’s fulldome expanse, experience the thrills, challenges, and serendipity of wildlife photography and explore the role of visual culture as a catalyst for positive social change on our tiny blue planet.

Advance registration beginning March 10 /// (March 8 for Museum members)

Image Source: NASA, ESA, CXC and the University of Potsdam, JPL-Caltech, and STScI

Stories Under the Stars

— Wednesday, April 20 / 7:30pm & 9:00pm
— Admission $12
— Ari Daniel, science reporter

Come to the Charles Hayden Planetarium for an evening of live storytelling, radio, and music under the stars. You’ll hear true stories, both personal and inspired by science, that explore the theme of “Light in the Dark,” all unfolding beneath the canopy of our cosmos. Join the search for light during the earliest moments of your life and from the outer reaches of our universe to the inner reaches of the human heart.

Tickets on sale beginning January 28 /// (January 26 for Museum members)
Hosted by science reporter Ari Daniel and co-produced by Ari and the Museum of Science as part of the Cambridge Science Festival.

Image Source: NASA

Space Station

— Thursday, April 21 / 7:30pm
— Admission $10
— Jared Sorensen, game designer

You wake up inside the cramped confines of a cryosleep chamber. You feel weak and dizzy from a prolonged period in cryonic suspension. What will you do next? Join game designer Jared Sorensen and the Charles Hayden Planetarium team as we break new ground in the Planetarium dome. Inspired by the text-parsing games of the ’80s, Space Station allows the entire audience to play a single character trying to survive a dangerous situation… in space! Give commands, explore rooms, examine objects, and try to escape the Space Station, if you can!

Check out the Parsely website for more information about their series of text-based adventure games.

Tickets on sale beginning January 28 /// (January 26 for Museum members)
Part of the Cambridge Science Festival.

Image Source: David Rabkin

Cosmic Loops

— Wednesday, May 18 / 7:15pm
— Admission $15
— Ian Ethan Case, acoustic double-neck guitars, fretless guitar, live looping | Stephanie Case, live sound design | Bertram Lehmann, percussion | Jeff Willet, gongs and percussion

As you soar through nebulas, galaxies, and star systems in the immersive space under the dome of the Charles Hayden Planetarium, live music with simple beginnings builds layer upon layer into an intricate universe of musical loops created by masters of an evocative style. Acoustic double-neck guitarist Ian Ethan fluidly combines a staggering variety of self-invented playing techniques necessitated by his multilayered compositions, further expanded using real-time live looping technology. Indulge in this rare quartet performance in which gongs and exotic percussion instruments from around the world take Ian’s latest compositions into new dimensions, with the Planetarium team’s transcendent visions overhead.

Tickets on sale beginning January 28 /// (January 26 for Museum members)

Using Real Pluto Imagery – From Dream to Discovery: Inside NASA

In producing From Dream to Discovery: Inside NASA we made the exciting but perilous decision to include the New Horizons mission within our story. So we made an early bet that the mission would be a success…

As you well know, New Horizons has given us an amazing close-up look at Pluto. And so we are excited to announce that we have updated the show to include the latest real images of Pluto and Charon!

Blueprint to Blastoff: Free Engineering Materials for the Planetarium or Classroom

Talia-Bio-PhotoWe are offering 3 distinct educational modules, focusing on aspects of spacecraft engineering, to anyone with a planetarium or classroom who would like to use them. They supplement, but are independent of our newest show From Dream to Discovery: Inside NASA and are being shared free of charge.

This article was written by Talia Sepersky. She currently works as a planetarium educator at the Charles Hayden Planetarium, Museum of Science, Boston.

Intro: Putting the “E” back in “STEM”
Module 1: Fixing the Hubble Space Telescope
Module 2: Gravity And Space Travel
Module 3: Design a Mission
The Guides
Teacher Bundles

Intro: Putting the “E” back in “STEM”

When it comes to STEM, planetarium shows tend to be very good at covering the science, technology, and even the math portions, but engineering often gets left out. To help fill this void, in 2013 we, the staff of the Charles Hayden Planetarium at the Museum of Science, Boston, teamed up with NASA to make a planetarium show about spacecraft engineering. The result of this partnership is the show “From Dream to Discovery: Inside NASA,” which explores what it takes to design, test, build, and fly a successful space mission.

As much as we would have liked to, we could not talk in detail about every part of spacecraft engineering during the show. However, through the partnership with NASA, we were able to expand on a few engineering topics from the show in three separate, supplementary education modules. We are extremely pleased to be able to offer these modules to anyone who wants to use them completely free of charge.

The modules themselves have three very different lengths, styles, and topics, and are designed to be presented in different ways. They can be used on a planetarium dome, and a flatscreen version permits their use on a conventional screen as well. Although each goes into depth on topics that are raised in “From Dream to Discovery: Inside NASA,” they all stand on their own and require no knowledge of the show itself. The three modules are: “Fixing the Hubble Space Telescope”, “Gravity and Space Travel”, and “Design a Mission”.

Module 1: Fixing the Hubble Space Telescope

We’ve found that many people in our audiences know that there was something wrong with Hubble when it launched, and that it was eventually fixed. However, few people tend to be aware of the details. The first of our modules, “Fixing the Hubble Space Telescope,” goes into some of those details. It’s the most straightforward of the three modules, consisting of a single video approximately eight minutes long. Large portions of the narration are undertaken by Dr. Jeffrey Hoffman, a former astronaut who flew on the first Hubble servicing mission.

With this module we wanted to focus on a specific case of spacecraft engineering, and Hubble Servicing Mission 1 provides a fantastic real life example. We also wanted to bring in the idea that failures can be instructive.

This module starts by introducing Hubble in space, and then describing how astronomers realized the telescope had a flaw, using some of Hubble’s earliest observations to make the point. It then takes Hubble apart to show the primary mirror and allow Dr. Hoffman to describe exactly what went wrong with making it.

While still looking at a cutaway view of Hubble, Dr. Hoffman goes on to explain the “fix” designed by engineers to repair Hubble, describing the arrangement of mirrors that allowed light entering Hubble’s tube to be refocused before landing on the detection instruments. While he is providing the narration, the visuals show this in action, following a light path all the way through Hubble to the instruments.

The module then moves on to the installation of the new optics on Hubble, with Dr. Hoffman talking about the work on the shuttle mission. This is accompanied by visuals of Hubble and the space shuttle in space, as well as actual video clips from the mission. In one of our favorite parts of this module, Dr. Hoffman shares his story of receiving the phone call that let him know the fix had worked, as well as some thoughts on what it felt like to actually touch Hubble. Some of the visuals for this portion include Hubble images, comparing pictures of the same objects before and after the repair.

The module concludes with the idea that we can learn from failures like Hubble’s. To quote Dr. Hoffman at the module’s end, “The important thing, though, is if you do have a failure, you really need to be able to learn from it. To have a failure that you don’t learn anything from, that’s tragic.”

Module 2: Gravity And Space Travel

It turns out that describing what goes on during a gravity assist can be tricky business. This module introduces some of the mechanics of the momentum transfer that happens during a gravity assist maneuver through Earth-based and space-based examples, as well as describing some of the various ways gravity assists can be used in a space mission.

Since gravity assists can be a tough subject to teach and the depth a presenter goes into will vary widely with different audiences, we designed this module to be as flexible as possible. It is broken up into five segments, each about 1-2 minutes in length (for a total of about 7 minutes of video). Each segment can be presented independently of the others if the presenter only wants to use some but not all. They can also follow after each other, with each segment building on the one before.

We created this format with the idea of using live interpretations in between each of the segments, to reiterate or emphasize the content covered in the previous segment and set up for the next one. However—maximum flexibility!—they can also be strung together to create one unbroken video, depending on the presenter’s preferred style. The core ideas behind momentum transfer and gravity assists are presented in segments 2 and 3, so our recommendation is that at least these two be used.

Segment 1 is relatively straightforward. It starts with the idea that spacecraft travel is often not as easy as pointing the spacecraft at its destination and giving it a push. It introduces the terms “gravity assist” and “momentum transfer” and also defines the word “momentum.”

Segment 2’s purpose is to help the audience gain a better understand of the transfer of momentum using an Earth-based example. To this end, we enlisted the help of a local roller derby team. We wanted to emphasize the idea that gravity assists work not just because the planets are large (i.e. have a lot of gravity) but because they are also moving (i.e. have a lot of momentum).

For this, we had one skater (designated Skater One) hold still and whip her teammates around her as they approach. While her teammates’ paths change, their speed remains more or less the same. We then recreated the same scenario with Skater One also in motion. This time, when she whips her teammates around, their speed increases noticeably even as Skater One’s decreases, due to the momentum transfer between them.

Segment 3 builds on the Earth-based example with a space-based one, specifically the New Horizons gravity assist flyby of Jupiter in February 2007. It starts by looking at what would have happened if New Horizons had gone directly from Earth to Pluto, then looks at the Jupiter flyby. The visuals show an overhead view of New Horizons approaching Jupiter and then visibly increasing its speed as it flies past. This segment uses some actual numbers to get across how much momentum Jupiter has to spare and to emphasize the fact that the planet is, for all practical purposes, not actually affected by losing some. It ends by describing the changes in New Horizons’ speed and flight time as a result of the flyby.

Since Segment 3 presents how a gravity assist can be used to speed a spacecraft up, Segment 4 explores how one can be used to slow a spacecraft down. It shows how the angle at which a spacecraft approaches a planet determines whether the planet transfers momentum to the spacecraft (to speed the spacecraft up) or the spacecraft transfers momentum to the planet (to slow the spacecraft down). It also re-emphasizes the idea that, no matter what the spacecraft does, it will have no practical effect on the planet.

The final segment, Segment 5, brings up the use of multiple gravity assists in a single mission, requiring careful planning many years in advance. To conclude, it loops back to the idea raised in Segment 1 that many space missions are only possible with the use of gravity assists (showing some of the rather convoluted paths these missions took), and that by making clever use of them we have vastly expanded our knowledge of the Solar System.

Module 3: Design a Mission

The “Design a Mission” module is the most interactive of the three and requires a live presentation. In this activity the audience, using information provided to them by the presenter, designs a spacecraft to search for signs of water in the Solar System. They have to choose a destination and then, based on that destination, a power source and whether their spacecraft will be a lander or orbiter. If they design their spacecraft well to suit their destination, the mission will succeed. If they do not, the mission will fail (and how it fails depends on the spacecraft design).

The module itself is made up of thirteen video clips to incorporate all the possible outcomes of the audience’s decisions. In total, the video clips make up about 35 minutes of footage, but a presenter should only need a fraction of that during any given presentation.

The first clip represents the audience’s first decision: will their spacecraft travel to Mars or Saturn in search of evidence of water? The visual for this clip is fairly basic, with images of both of those planets on the screen.

Once they’ve chosen the destination, the second clip represents the audience’s next decision: will the spacecraft be an orbiter or a lander? The presenter may want to provide the audience with some of the benefits and disadvantages of each, or ask the audience to come up with some on their own. The visual is of the two different styles of spacecraft. The “lander” option is based roughly on Cassini with a Huygens-style lander attached to its side.

The third decision is whether to make the spacecraft solar or nuclear-powered, and there are two clips that can potentially be used depending on whether the audience chose an orbiter or a lander. If they chose “lander,” the corresponding clip shows two versions of the lander-style spacecraft, one with solar panels and one without (the nuclear reactor is visible on the bottom edge of the nuclear-powered spacecraft, but is small and not immediately obvious like the solar panels). If they chose “orbiter” the visual is the same, with the orbiter-style spacecraft instead. Again, the presenter may want to make sure the audience knows the benefits and drawbacks of each choice.

Now that they have designed their spacecraft, it’s time to send it to the chosen planet and see if it succeeds. There are eight different clips to represent the eight possible outcomes of the audience’s choices. All start with a liftoff from Earth and a view of the spacecraft moving towards its destination. What happens once it starts moving depends on how well the spacecraft was designed.

The four Mars scenarios (nuclear orbiter, nuclear lander, solar orbiter, and solar lander) all succeed. The two lander scenarios make use of the landing sequence of the Curiosity rover for visuals. The landers will find evidence for water in the form of “blueberries,” frost, and silica deposits. The orbiters will find evidence of water from seeing river channels, hydrogen deposits, and rampart craters.

It’s much harder to succeed at Saturn, and only one scenario, the nuclear-powered orbiter, will lead to success. If the audience chose a solar-powered spacecraft, then as it moves through space towards Saturn the picture will turn to static to represent the spacecraft losing power and shutting down. If they chose a nuclear-powered lander, they will see a rather stunning sequence of their lander entering the atmosphere, heating up, and exploding. If they chose a nuclear-powered orbiter, they will find evidence of water in the geysers on Enceladus and in Saturn’s E Ring.

Since not all of the mission designs succeed, the presenter may wish to talk about failure in spacecraft engineering. To this end, we wanted to show audiences that the professionals also sometimes don’t get it right. The final clip shows images from four real life failed missions from different countries, specifically the Vanguard rocket, the Mars Climate Orbiter, the Phobos-Grunt mission, and the Akatsuki mission. As with the end of the “Fixing Hubble” module, the idea is to emphasize that failures happen, and that the important thing is to learn from them when they do.

The Guides

Between them, these three modules present a lot of information, some of it very specific. To make them as easy as possible for a large variety of institutions to use, we’ve also created planetarian guides to go with each. Our hope is that a presenter with no background in any of these three topics can make an effective presentation on any or all of them using just the material found in the corresponding planetarian guide. In addition to the script for the module, a set of FAQs, and a glossary, each guide contains copious background information as well as some suggestions for presentation.

The “Fixing Hubble” guide includes a layout of Hubble’s optics, even more detail about the flaw and how it was fixed, a brief breakdown of each of NASA’s Hubble servicing missions, and a list of Hubble specifications.

The “Gravity and Space Travel” guide goes into greater detail about the mechanics of gravity assists, how momentum is transferred, and why the spacecraft’s trajectory changes. It also looks at the usefulness of gravity assists on specific missions and provides a list of missions that have made notable uses of gravity assists. In the script section, it provides some guidelines for live interpretation in between the video segments as well instructions on how to recreate the roller skater demo from Segment 2 in house, using either staff or audience members.

The “Design a Mission” guide includes specific descriptions of each of the visuals in the clips and what they are designed to represent. There is an outline for the progression of the module, with some guidelines for discussion, background information on the pros and cons of landers, orbiters, solar power, and nuclear power, and a description of why each mission succeeds or fails. There is also a list of all of the video clips included with this module.

Separate from the planetarian guides, there is a set of educator guides for teachers using the modules in a standard classroom setting. The educator guides are geared more towards using the modules as part of a lesson in a school environment rather than a presentation in a planetarium show, and the information they include is not as detailed as that in the planetarian guides. There are also educator guides for topics not included in the modules, including “Waves and Information Transfer” and “Infrared Astronomy,” which also expand a bit on topics raised in the show “From Dream to Discovery.”


To ensure that many different institutions, classrooms, and other settings can make use of our modules, we are offering them in a variety of formats. The modules are all available in 1K, 2K, and 4K fulldome versions for planetarium domes. There are also flat versions available for use in standard classrooms or for anyone using a flatscreen projector (complete with captions).

4k domemaster downloads are available on the ESO Fulldome Archive.

Teacher Bundles

The Teacher Bundles for “Fixing Hubble” and “Gravity Assist” include the flatscreen captioned versions of the modules as well as the educator guides. The classroom version of “Design a Mission” is web-based, so the Teacher Bundle for that module includes the educator guide and link to the web-based activity. The modules page also includes a Teacher Bundle with the “Waves and Information Transfer” and “Infrared Astronomy” educator guides.

Copyright 2015 International Planetarium Society; article used with permission.

This material is based upon work supported by NASA under grant number NNX12AL19G. Any opinions, findings, and conclusions or recommendations expressed are those of the Museum of Science, Boston and do not necessarily reflect the views of the National Aeronautics and Space Administration (NASA).

DJ Spooky: The Hidden Code – Performing in the Dome

My love for live music in the dome is undeniable. The idea is simple but powerful: Allow the synthesis of live performance and astronomy visuals to create a uniquely awe-inspiring experience.

Having thrown a series of live music events, each with its own custom dome visuals, we now have a collection of 4k dome material. So when DJ Spooky approached us with the idea of partnering to create a live fulldome show, it felt like a natural match. And the premiere of the show is just a few weeks away.

DJ Spooky: The Hidden Code — tickets
Performing at the Charles Hayden Planetarium, Museum of Science
Thursday, September 24, 2015 — 7:00–9:00 pm


Now Booking Dome Performances

After the premiere of the album and fulldome show is when things get interesting for you. DJ Spooky is looking for domes to perform in! For live bookings please contact Sozo.

We have also created a canned version of the show which is meant to compete with evening laser shows. If you’re interested in licensing the show, then please contact me.

4k Fulldome Show Optionsfulldome trailer
— Live performance (visuals split by song)
— Canned show (45 minute show)

Flat Theater Options [16:9 ratio]flat trailer
— Live performance (visuals split by song)
— Canned show (45 minute show)

More Info About The Hidden Code Album

Imagine a visual odyssey through the cosmos, driven by lush musical compositions and inspired by complex themes of astronomy, engineering, biology, and psychology. The Hidden Code is the newest work by Paul D. Miller, aka DJ Spooky. Commissioned by Dartmouth College’s Neukom Institute for Computational Science, Miller composed the album based on conversations with several of Dartmouth’s leading researchers.

The album features Dartmouth theoretical physicist and saxophonist Stephon Alexander; and Dartmouth physicist and author Marcelo Gleiser who reads his original poetry.

Check out the free online streaming of The Hidden Code album.

Savor this synthesis of emerging science, poetry, and melody with immersive visions overhead as The Hidden Code pushes art into science. Science into music. Music into art.

Paul D. Miller, aka DJ Spooky, is a composer, music producer, performer, multimedia artist and National Geographic Emerging Explorer. He has collaborated with an array of recording artists, from Metallica and Chuck D to Steve Reich and Yoko Ono. He is the author of Imaginary App, Rhythm Science, Sound Unbound and Book of Ice.

Stephon Alexander is a theoretical physicist, tenor saxophonist and recording artist. He specializes in cosmology, particle physics and quantum gravity. He is the Ernest Everett Just 1907 Professor of Natural Sciences at Dartmouth and a National Geographic Emerging Explorer.

Marcelo Gleiser is a theoretical physicist specializing in particle cosmology. He is the author of The Island of Knowledge, A Tear at the Edge of Creation, The Prophet and the Astronomer, and The Dancing Universe. He is the founder of NPR’s blog 13.7 on science and culture. He is the Appleton Professor of Natural Philosophy and Professor of Physics and Astronomy at Dartmouth.



NPR – The Hidden Code: An Embrace Of Art And Science
Sound of Boston – Interview
Dartmouth – DJ Spooky Album Explores Universe With Dartmouth Scientists

Dome Screening at SIGGRAPH 2015

Our short fulldome film Waiting Far Away has been selected to be screened during SIGGRAPH 2015! So if you will be attending then please check it out.

Scheduled within the Art Reel: Part 1 sessions:
— Monday, Aug 10 /// 10:45am-11:00am
— Tuesday, Aug 11 /// 12:45pm-1:00pm
— Tuesday, Aug 11 /// 3:45pm-4:00pm
— Wednesday, Aug 12 /// 12:45pm-1:00pm
— Wednesday, Aug 12 /// 4:45pm-5:00pm
— Thursday, Aug 13 /// 12:45pm-1:00pm

The VR Village Dome will be in Exhibit Hall G in the South Building of the Los Angeles Convention Center.